- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Burningham, Ben (2)
-
Calamari, Emily (2)
-
Visscher, Channon (2)
-
Alejandro, Sherelyn (1)
-
Faherty, Jacqueline K (1)
-
Faherty, Jacqueline K. (1)
-
Gaarn, Josefine (1)
-
Gagliuffi, Daniella Bardalez (1)
-
Gemma, Marina E (1)
-
Gemma, Marina E. (1)
-
Gonzales, Eileen (1)
-
Marley, Mark (1)
-
Morley, Caroline V. (1)
-
Park, Grace (1)
-
Rothermich, Austin (1)
-
Tan, Xianyu (1)
-
Vos, Johanna M. (1)
-
Whiteford, Niall (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present results from conducting a theoretical chemical analysis of a sample of benchmark companion brown dwarfs whose primary star is of type F, G, or K. We summarize the entire known sample of these types of companion systems, termed “compositional benchmarks,” that are present in the literature or recently published as key systems of study in order to best understand brown dwarf chemistry and condensate formation. Via mass balance and stoichiometric calculations, we predict a median brown dwarf atmospheric oxygen sink of by utilizing published stellar abundances in the local solar neighborhood. Additionally, we predict a silicate condensation sequence such that atmospheres with bulk Mg/Si ≲0.9 will form enstatite (MgSiO3) and quartz (SiO2) clouds, and atmospheres with bulk Mg/Si ≳0.9 will form enstatite and forsterite (Mg2SiO4) clouds. The implications of these results on C/O ratio trends in substellar-mass objects and the utility of these predictions in future modeling work are discussed.more » « less
-
Vos, Johanna M.; Burningham, Ben; Faherty, Jacqueline K.; Alejandro, Sherelyn; Gonzales, Eileen; Calamari, Emily; Gagliuffi, Daniella Bardalez; Visscher, Channon; Tan, Xianyu; Morley, Caroline V.; et al (, The Astrophysical Journal)Abstract We present an atmospheric retrieval analysis of a pair of highly variable, ∼200 Myr old, early T type planetary-mass exoplanet analogs SIMP J01365662+0933473 and 2MASS J21392676+0220226 using the Brewster retrieval framework. Our analysis, which makes use of archival 1–15μm spectra, finds almost identical atmospheres for both objects. For both targets, we find that the data is best described by a patchy, high-altitude forsterite (Mg2SiO4) cloud above a deeper, optically thick iron (Fe) cloud. Our model constrains the cloud properties well, including the cloud locations and cloud particle sizes. We find that the patchy forsterite slab cloud inferred from our retrieval may be responsible for the spectral behavior of the observed variability. Our retrieved cloud structure is consistent with the atmospheric structure previously inferred from spectroscopic variability measurements, but clarifies this picture significantly. We find consistent C/O ratios for both objects, which supports their formation within the same molecular cloud in the Carina-Near moving group. Finally, we note some differences in the constrained abundances of H2O and CO, which may be caused by data quality and/or astrophysical processes such as auroral activity and their differing rotation rates. The results presented in this work provide a promising preview of the detail with which we will characterize extrasolar atmospheres with JWST, which will yield higher-quality spectra across a wider wavelength range.more » « less
An official website of the United States government
